
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Optimizing Builds in Honkai: Star Rail using Branch

and Bound

Muhammad Naufal Rayhannida - 10123006

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: naufalrayhannida@gmail.com , 10123006@mahasiswa.itb.ac.id

Abstract—Honkai: Star Rail is a popular turn-based video

game developed by miHoYo. In this game, the players take turns

fighting enemies using their abilities. Part of this game is gearing

up your characters with “Relics” to increase their damage

potential. This paper will discuss a branch-and-bound algorithm

to help optimize the builds of characters.

Keywords—Optimization; Branch and Bound; Honkai: Star

Rail;

I. INTRODUCTION

Honkai: Star Rail is a turn-based video game developed
miHoYo and published by Hoyoverse. In this game, players
fight enemies by taking turns using abilities. Every time the
player damages an enemy, the game will use the character and
enemy’s “stats” to calculate how much damage is dealt.
However, before every fight starts, the player has the
opportunity to gear up their characters with “relics”. Each relic
has a “main stat” and 4 possible “substats”, each of them
contributing to the character’s stats.

Fig. 1. Example of a relic with ATK main stat and ATK, DEF, CRIT Rate,

and CRIT DMG substats.

 Each relic is also divided into 2 types, Cavern Relics and

Planar Relics. Cavern Relics are divided into 4 types which

are Head, Hands, Body, and Feet relics. Planar Relics are

divided into 2 types, Planar Spheres and Link Rope. A

character can wear 6 different relics, one for each type of

Cavern and Planar Relics.

Fig. 2. Example of a character wearing all 6 different relics, with Planar

Relics being the 2 in the middle.

 A relic is also a part of a “set”. When a character uses 2 or

4 relics of the same set, the character will get additional stats

as a bonus. During the fight, characters can also get “buffed”

either temporarily or permanently. These buffs can drastically

change what builds the characters want as they can saturate a

single stat. For the sake of simplicity, this paper will only

include main stats, substats and assume any additional buffs

from outside sources are always active.

mailto:naufalrayhannida@gmail.com
mailto:10123006@mahasiswa.itb.ac.id

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 3. Example of a character giving buffs to other characters.

 As there are 6 possible relic slots, by using a naïve brute

force approach and iterating through the entire list of relics

will have a time complexity of O(n6). While not exponential, it

is still a high degree polynomial which does not scale well

with more inputs. The Branch and Bound algorithm does not

improve on the worst case time complexity, however it does

improve on the average time immensely. Analyzing the exact

time complexity for this specific problem is a daunting task [2]

that this paper will not get into.

II. THEORETICAL ANALYSIS

A. Branch and Bound

Branch and Bound (BnB) is an optimization algorithm
where the problem is broken down into subproblems. Each
subproblem would be evaluated by a bounding function and if
the subproblem cannot result in an optimal solution, the
subproblem will not be evaluated any longer.

The algorithm traverses the solution space as a tree and
evaluates every child along with its estimated bound. If one of

the nodes have their estimated bound lower than the current
maximum, then that node would be pruned and would no
longer be expanded. The algorithm would then take the node
with the highest potential according to its estimated bound and
evaluate its children, and so on until every possible node has
been evaluated and the maximum has been found.

Fig. 4. Example of solution space and traversal. Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-

Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf, accessed on 24 June 2025

 In practice, this algorithm uses a priority queue to list

out all the live nodes. When a node is being traversed, it is

evaluated and compared against the current best maximal

node. If it’s higher than the current maximum, then it updates

the current maximum and prunes all nodes in the priority

queue that’s lower than the node’s value. After that, the node’s

children would be added to the priority queue with the priority

being the result of the bounding function, which would

estimate the value of the children. After the priority queue has

been fully exhausted, the current maximum is the optimal

solution and the algorithm can be terminated.

B. Mathematical Analysis

This section will derive the approximation function used to
bound a node in the BnB algorithm. The factors used in the
damage formula for Honkai: Star Rail goes as follows:

DMG = Base DMG ⋅ Crit ⋅ DMG Boost ⋅ Weaken ⋅ DEF ⋅ RES
⋅ Vulnerability ⋅ DMG Mitigation ⋅ Broken Multiplier

 However, many of the factors are enemy specific and aren’t
affected by the builds of characters. Therefore, we can simplify
the damage formula. The simplified formula goes as follows:

DMGsimple = Base DMG ⋅ Crit ⋅ DMG Boost

where,

Base DMG = Ability Multiplier ⋅ Scaling Stat
Crit = 1 + Crit Rate ⋅ Crit Damage

DMG Boost = 1 + DMG Booststat

 Because Ability Multiplier is a constant that’s tied to the
character and not the build, we can ignore it from now on.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

From here, we can expand the of the crit multiplier to get the
following

DMGsimple = Scaling Stat ⋅ DMG Boost
+ Scaling Stat ⋅ Crit Rate ⋅ Crit Damage ⋅ DMG Boost

 We can see that DMGsimple is a sum of 2 monomial terms.
Unfortunately, getting the maximum of the monomial terms
with 4 different relic slots is hard. We would need to iterate
over every combination of relics to get the bound of that node.
Therefore, we need to construct an approximation that is an
upper bound to the DMGsimple formula. By getting the possible
domain of each stat, we can construct a linear function

f(x, y, z, w) = ax + by + cz + dw + e

where x, y, z, and w are the character’s stats, and f(x, y, z, w) is
greater than DMGsimple for every x, y, z, w in the domain. To get
the constants a, b, c, d, and e, we only need to check the
corners of a hypercube that are defined by the domain of each
stat as the function we’re working with is linear. We can solve
this by using linear programming by minimizing the errors on
each corner and constraining them to be positive. Linear
programming can be solved by using algorithms such as the
simplex algorithm or the interior point method. The
approximation for the damage formula now looks like

DMGsimple, approx. = k1 Scaling Stat + k2 Crit Damage + k3 Crit
Rate+ k4 DMG Boost +k5

for some constants k1, k2, k3, k4 and k5. With this linear
approximation, we no longer need to check every combination
of relics. We only need to take the maximum for each slot to
get the upper bound, thereby getting a major speed up to
computational complexity.

C. Algorithm Implementation Details

With the approximation function defined, we can now

start with the details of the BnB algorithm implementation.

We start by creating a node with no relic data and 0 cost and

append it to a priority queue. From here, we will need to

generate the possible bounds for each stat and create the

approximation function for the first node. After constructing

the approximation function, we can now expand the node and

append it to the priority queue. Each of the node’s children

will have Head piece relic appended to its relic data and given

a cost using the approximation function. The rest of the

algorithm will be the same. We pop out the node with the

highest cost, generate the bounds, get the approximation

function, and expand the node by giving its children the next

piece. The order of the pieces is Head, Hands, Body, Feet,

Planar Sphere, and Link Rope. Once a node has all 6 pieces,

the node is then calculated using the DMGsimple formula. Every

other node with cost less than the true value of the node

evaluated will be pruned. After the priority queue has been

exhausted, the node with the highest value will be the optimal

node.

III. IMPLEMENTATION

This paper implemented this algorithm using Python 3.13
and SciPy for solving the linear programming problem. The
full source code is available in the GitHub repository linked at
the end of the paper, however some of the snippets regarding
the approximation function will be discussed in this section.

def lin_approx(domains: List[List[float]]) -> List[float]:

 var_amount = len(domains)

 c = [2**(var_amount-1)*(dom[0] + dom[1]) for dom in domains] +

[2**var_amount]

 A = [[domains[j][_get_bit_at(i, j)] for j in

range(var_amount)] + [1] for i in range(2**var_amount)]

 b = [-_prod(x) for x in A]

 A = [[-x for x in bound] for bound in A]

 bounds = [(None, None) for _ in c]

 linprog_res = linprog(c, A_ub=A, b_ub=b, bounds=bounds,

method='highs-ipm')

 return linprog_res.x

 This function interfaces with linprog from the SciPy library
to get the constants for the approximation function. The
coefficients for the objective function can be immediately
found by multiplying the sum of the domain endpoints by 2n-1
where n is the amount of variables, except the coefficient for
the constant where it’s 2n instead.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

current_stats = calculate_stats(current_node.data, char,

buffs)

coeffs_1 = lin_approx([get_stat_bound(current_stats,

next_relic_groups, char, stat, buffs),

get_stat_bound(current_stats, next_relic_groups, char,

char.element, buffs)])

coeffs_2 = lin_approx([get_stat_bound(current_stats,

next_relic_groups, char, stat, buffs),

get_stat_bound(current_stats, next_relic_groups, char,

char.element, buffs), \

get_stat_bound(current_stats, next_relic_groups, char, 'cr_',

buffs), get_stat_bound(current_stats, next_relic_groups, char,

'cd_', buffs)])

 # Combine them both by adding the same stat to

eachother

coeffs = [coeffs_2[0] + coeffs_2[0], coeffs_2[1] +

coeffs_1[1], coeffs_2[2], coeffs_2[3], coeffs_2[4] +

coeffs_1[2]]

 The coefficient from the previous function has to be added
correctly according to each stat it represents.

def get_stat_bound(current_stats: Dict[FlatStats, float],

new_relics_per_type: List[List[Relic]], char: Character,

scaling_stat: FlatStats, buffs: Dict[FlatStats, float]) -> float:

 best_inc, worst_inc =

get_best_worst_bounding_increases(new_relics_per_type, char,

scaling_stat)

 if scaling_stat in ['ice_', 'fire_', 'lightning_', 'wind_',

'physical_', 'quantum_', 'imaginary_']:

 best_inc += 1

 worst_inc += 1

 best = current_stats.get(scaling_stat, 0) + best_inc +

buffs.get(scaling_stat, 0)

 worst = current_stats.get(scaling_stat, 0) + worst_inc +

buffs.get(scaling_stat, 0)

 if scaling_stat == 'cr_':

 best = min(1, best)

 return [worst, best]

 The bounds are treated as flat increases that change the
current stat of a character. The DMG Bonus multiplier is

treated as a single variable, as it’s just the DMG Bonus stat
added by one.

IV. RESULTS AND ANALYSIS

The following results were taken using this base case

 This base case is modelled after the character “The
Herta” with some indeterminate external buffs. The relic pool
is randomized with for each run, with differing qualities and
counts.

Fig. 5. Results with 303 high quality relics

Fig. 6. Results with 123 high quality relics

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Fig. 7. Results with 360 random relics

Fig. 8. Results with 300 random relics

Fig. 9. Results with 180 random relics

The algorithm has improved the time complexity
immensely from the naïve brute force algorithm of O(n6) to
something more manageable. However, the better relics you
have, the longer it will take, as it will take longer for the tree to
reach its leaf nodes and prune out branches near the top. It can
also be seen in the 300 and 360 random relic test cases, where
different relics can be clearly seen to drastically affect the
runtime.

Some improvements that can be made are the assumptions
that are ignored, such as permanent buffs and the lack of relic
sets. By making a smarter approximation function, it would be
possible to account for non-permanent buffs and relic sets. The
implementation in this paper can also be improved by using a
language with better memory management as Python does not
have a robust way of managing memory and making the most
out of the CPU’s cache. It is also possible to preprocess the
relics first and pre-prune the relics that do not have any useful
stats. However, that will require a more robust UX design than
a simple Python script.

There is also the possibility of parallelization, as described
by Vu and Derbel (2016) [3]. By effectively splitting up the
work into different workers, there is a potential to get larger
gains. However, as mentioned in the paper by Vu and Derbel,
memory management is crucial as accessing memory is a
major bottleneck in improvement. If memory management is
done correctly, the speed-up is near-linear.

Another improvement that can be made for the user is
optimizing for multiple attacks at once. Because each attack

can have different scaling, it is important to make sure your
stats are distributed equally.

ACKNOWLEDGMENT

The author would like to thank the lecturers of IF2211 for
teaching the class of 2024/2025 with knowledge about
algorithms and how to measure their speed.. The author would
also like to thank the fellow mathematics major who took up
the IF2211 class despite it being a hard subject to do.

SOURCE CODE

The source code for the algorithm can be found in the
following GitHub repository.

REFERENCES

[1] R. Munir, Branch and Bound Algorithm (Part 1), 2025,
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-
Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf, accessed on 24 June
2025.

[2] R. Lipton, 2012, Branch And Bound—Why Does It Work?,
https://rjlipton.com/2012/12/19/branch-and-bound-why-does-it-work/,
accessed on 24 June 2025.

[3] Trong-Tuan Vu, Bilel Derbel. Parallel Branch-and-Bound in Multi-core
Multi-CPU MultiGPU Heterogeneous Environments. Future Generation
Computer Systems, 2016, 56, pp.95-109.
ff10.1016/j.future.2015.10.009ff. ffhal-01067662.

[4] Honkai: Star Rail Wiki, 2025, https://honkai-star-
rail.fandom.com/wiki/Damage, accessed on 24 June 2025.

https://github.com/naufal101006/Makalah_IF2211_10123006
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/17-Algoritma-Branch-and-Bound-(2025)-Bagian1.pdf
https://rjlipton.com/2012/12/19/branch-and-bound-why-does-it-work/
https://honkai-star-rail.fandom.com/wiki/Damage
https://honkai-star-rail.fandom.com/wiki/Damage

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 1 Juni 2025

Muhammad Naufal Rayhannida (10123006)

