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Abstract—Honkai: Star Rail is a popular turn-based video 

game developed by miHoYo. In this game, the players take turns 

fighting enemies using their abilities. Part of this game is gearing 

up your characters with “Relics” to increase their damage 

potential.  This paper will discuss a branch-and-bound algorithm 

to help optimize the builds of characters.  
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I.  INTRODUCTION 

Honkai: Star Rail is a turn-based video game developed 
miHoYo and published by Hoyoverse. In this game, players 
fight enemies by taking turns using abilities. Every time the 
player damages an enemy, the game will use the character and 
enemy’s “stats” to calculate how much damage is dealt. 
However, before every fight starts, the player has the 
opportunity to gear up their characters with “relics”. Each relic 
has a “main stat” and 4 possible “substats”, each of them 
contributing to the character’s stats.  

 

Fig. 1. Example of a relic with ATK main stat and ATK, DEF, CRIT Rate, 

and CRIT DMG substats. 

 Each relic is also divided into 2 types, Cavern Relics and 

Planar Relics. Cavern Relics are divided into 4 types which 

are Head, Hands, Body, and Feet relics. Planar Relics are 

divided into 2 types, Planar Spheres and Link Rope. A 

character can wear 6 different relics, one for each type of 

Cavern and Planar Relics. 

 

Fig. 2. Example of a character wearing all 6 different relics, with Planar 

Relics being the 2 in the middle. 

 A relic is also a part of a “set”. When a character uses 2 or 

4 relics of the same set, the character will get additional stats 

as a bonus. During the fight, characters can also get “buffed” 

either temporarily or permanently. These buffs can drastically 

change what builds the characters want as they can saturate a 

single stat. For the sake of simplicity, this paper will only 

include main stats, substats and assume any additional buffs 

from outside sources are always active. 

mailto:naufalrayhannida@gmail.com
mailto:10123006@mahasiswa.itb.ac.id


Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025 

 

 

Fig. 3. Example of a character giving buffs to other characters.  

 As there are 6 possible relic slots, by using a naïve brute 

force approach and iterating through the entire list of relics 

will have a time complexity of O(n6). While not exponential, it 

is still a high degree polynomial which does not scale well 

with more inputs. The Branch and Bound algorithm does not 

improve on the worst case time complexity, however it does 

improve on the average time immensely.  Analyzing the exact 

time complexity for this specific problem is a daunting task [2] 

that this paper will not get into. 

II. THEORETICAL ANALYSIS 

A. Branch and Bound 

Branch and Bound (BnB) is an optimization algorithm 
where the problem is broken down into subproblems. Each 
subproblem would be evaluated by a bounding function and if 
the subproblem cannot result in an optimal solution, the 
subproblem will not be evaluated any longer. 

The algorithm traverses the solution space as a tree and 
evaluates every child along with its estimated bound. If one of 

the nodes have their estimated bound lower than the current 
maximum, then that node would be pruned and would no 
longer be expanded. The algorithm would then take the node 
with the highest potential according to its estimated bound and 
evaluate its children, and so on until every possible node has 
been evaluated and the maximum has been found. 

 

Fig. 4. Example of solution space and traversal. Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/18-

Algoritma-Branch-and-Bound-(2025)-Bagian2.pdf, accessed on 24 June 2025 

 In practice, this algorithm uses a priority queue to list 

out all the live nodes. When a node is being traversed, it is 

evaluated and compared against the current best maximal 

node. If it’s higher than the current maximum, then it updates 

the current maximum and prunes all nodes in the priority 

queue that’s lower than the node’s value. After that, the node’s 

children would be added to the priority queue with the priority 

being the result of the bounding function, which would 

estimate the value of the children. After the priority queue has 

been fully exhausted, the current maximum is the optimal 

solution and the algorithm can be terminated. 

B. Mathematical Analysis 

This section will derive the approximation function used to 
bound a node in the BnB algorithm. The factors used in the 
damage formula for Honkai: Star Rail goes as follows: 

DMG = Base DMG ⋅ Crit ⋅ DMG Boost ⋅ Weaken ⋅ DEF ⋅ RES 
⋅ Vulnerability ⋅ DMG Mitigation ⋅ Broken Multiplier 

 However, many of the factors are enemy specific and aren’t 
affected by the builds of characters. Therefore, we can simplify 
the damage formula. The simplified formula goes as follows: 

DMGsimple = Base DMG ⋅ Crit ⋅ DMG Boost  

where, 

Base DMG = Ability Multiplier ⋅ Scaling Stat 
Crit = 1 + Crit Rate ⋅ Crit Damage 

DMG Boost = 1 +  DMG Booststat 

 Because Ability Multiplier is a constant that’s tied to the 
character and not the build, we can ignore it from now on. 
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From here, we can expand the of the crit multiplier to get the 
following 

DMGsimple = Scaling Stat ⋅ DMG Boost 
+ Scaling Stat ⋅ Crit Rate ⋅ Crit Damage ⋅ DMG Boost 

 We can see that DMGsimple is a sum of 2 monomial terms. 
Unfortunately, getting the maximum of the monomial terms 
with 4 different relic slots is hard. We would need to iterate 
over every combination of relics to get the bound of that node. 
Therefore, we need to construct an approximation that is an 
upper bound to the DMGsimple formula. By getting the possible 
domain of each stat, we can construct a linear function 

f(x, y, z, w) = ax + by + cz + dw + e 

where x, y, z, and w are the character’s stats, and f(x, y, z, w) is 
greater than DMGsimple for every x, y, z, w in the domain. To get 
the constants a, b, c, d, and e, we only need to check the 
corners of a hypercube that are defined by the domain of each 
stat as the function we’re working with is linear. We can solve 
this by using linear programming by minimizing the errors on 
each corner and constraining them to be positive. Linear 
programming can be solved by using algorithms such as the 
simplex algorithm or the interior point method. The 
approximation for the damage formula now looks like 

DMGsimple, approx. = k1 Scaling Stat + k2 Crit Damage + k3 Crit 
Rate+ k4 DMG Boost +k5 

for some constants k1, k2, k3, k4 and k5. With this linear 
approximation, we no longer need to check every combination 
of relics. We only need to take the maximum for each slot to 
get the upper bound, thereby getting a major speed up to 
computational complexity. 

C. Algorithm Implementation Details 

With the approximation function defined, we can now 

start with the details of the BnB algorithm implementation. 

We start by creating a node with no relic data and 0 cost and 

append it to a priority queue. From here, we will need to 

generate the possible bounds for each stat and create the 

approximation function for the first node. After constructing 

the approximation function, we can now expand the node and 

append it to the priority queue. Each of the node’s children 

will have Head piece relic appended to its relic data and given 

a cost using the approximation function. The rest of the 

algorithm will be the same. We pop out the node with the 

highest cost, generate the bounds, get the approximation 

function, and expand the node by giving its children the next 

piece. The order of the pieces is Head, Hands, Body, Feet, 

Planar Sphere, and Link Rope. Once a node has all 6 pieces, 

the node is then calculated using the DMGsimple formula. Every 

other node with cost less than the true value of the node 

evaluated will be pruned. After the priority queue has been 

exhausted, the node with the highest value will be the optimal 

node.  
 

III. IMPLEMENTATION 

This paper implemented this algorithm using Python 3.13 
and SciPy for solving the linear programming problem. The 
full source code is available in the GitHub repository linked at 
the end of the paper, however some of the snippets regarding 
the approximation function will be discussed in this section. 

def lin_approx(domains: List[List[float]]) -> List[float]: 

    var_amount = len(domains) 

 

    c = [2**(var_amount-1)*(dom[0] + dom[1]) for dom in domains] + 

[2**var_amount] 

    A = [ [domains[j][_get_bit_at(i, j)] for j in 

range(var_amount)] + [1] for i in range(2**var_amount) ] 

    b = [-_prod(x) for x in A] 

    A = [[-x for x in bound] for bound in A] 

 

    bounds = [(None, None) for _ in c]  

 

    linprog_res = linprog(c, A_ub=A, b_ub=b, bounds=bounds, 

method='highs-ipm') 

    return linprog_res.x 
 

 This function interfaces with linprog from the SciPy library 
to get the constants for the approximation function. The 
coefficients for the objective function can be immediately 
found by multiplying the sum of the domain endpoints by 2n-1 
where n is the amount of variables, except the coefficient for 
the constant where it’s 2n instead.  
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current_stats = calculate_stats(current_node.data, char, 

buffs) 

coeffs_1 = lin_approx([get_stat_bound(current_stats, 

next_relic_groups, char, stat, buffs), 

get_stat_bound(current_stats, next_relic_groups, char, 

char.element, buffs)]) 

coeffs_2 = lin_approx([get_stat_bound(current_stats, 

next_relic_groups, char, stat, buffs), 

get_stat_bound(current_stats, next_relic_groups, char, 

char.element, buffs), \ 

get_stat_bound(current_stats, next_relic_groups, char, 'cr_', 

buffs), get_stat_bound(current_stats, next_relic_groups, char, 

'cd_', buffs)]) 

         

        # Combine them both by adding the same stat to 

eachother 

coeffs = [coeffs_2[0] + coeffs_2[0], coeffs_2[1] + 

coeffs_1[1], coeffs_2[2], coeffs_2[3], coeffs_2[4] + 

coeffs_1[2]] 
 

 The coefficient from the previous function has to be added 
correctly according to each stat it represents.  

def get_stat_bound(current_stats: Dict[FlatStats, float], 

new_relics_per_type: List[List[Relic]], char: Character, 

scaling_stat: FlatStats, buffs: Dict[FlatStats, float]) -> float: 

    best_inc, worst_inc = 

get_best_worst_bounding_increases(new_relics_per_type, char, 

scaling_stat) 

     

    if scaling_stat in ['ice_', 'fire_', 'lightning_', 'wind_', 

'physical_', 'quantum_', 'imaginary_']: 

        best_inc += 1 

        worst_inc += 1 

 

    best = current_stats.get(scaling_stat, 0) + best_inc + 

buffs.get(scaling_stat, 0) 

    worst = current_stats.get(scaling_stat, 0) + worst_inc + 

buffs.get(scaling_stat, 0) 

 

    if scaling_stat == 'cr_': 

        best = min(1, best) 

 

    return [worst, best] 
 

 The bounds are treated as flat increases that change the 
current stat of a character. The DMG Bonus multiplier is 

treated as a single variable, as it’s just the DMG Bonus stat 
added by one.   

 

IV. RESULTS AND ANALYSIS 

The following results were taken using this base case 

 

 This base case is modelled after the character “The 
Herta” with some indeterminate external buffs. The relic pool 
is randomized with for each run, with differing qualities and 
counts. 

 

Fig. 5. Results with 303 high quality relics 

 

Fig. 6. Results with 123 high quality relics 
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Fig. 7. Results with 360 random relics 

 

Fig. 8. Results with 300 random relics 

 

Fig. 9. Results with 180 random relics 

The algorithm has improved the time complexity 
immensely from the naïve brute force algorithm of O(n6) to 
something more manageable. However, the better relics you 
have, the longer it will take, as it will take longer for the tree to 
reach its leaf nodes and prune out branches near the top. It can 
also be seen in the 300 and 360 random relic test cases, where 
different relics can be clearly seen to drastically affect the 
runtime.  

Some improvements that can be made are the assumptions 
that are ignored, such as permanent buffs and the lack of relic 
sets. By making a smarter approximation function, it would be 
possible to account for non-permanent buffs and relic sets. The 
implementation in this paper can also be improved by using a 
language with better memory management as Python does not 
have a robust way of managing memory and making the most 
out of the CPU’s cache. It is also possible to preprocess the 
relics first and pre-prune the relics that do not have any useful 
stats. However, that will require a more robust UX design than 
a simple Python script.  

There is also the possibility of parallelization, as described 
by Vu and Derbel (2016) [3]. By effectively splitting up the 
work into different workers, there is a potential to get larger 
gains. However, as mentioned in the paper by Vu and Derbel, 
memory management is crucial as accessing memory is a 
major bottleneck in improvement. If memory management is 
done correctly, the speed-up is near-linear. 

Another improvement that can be made for the user is 
optimizing for multiple attacks at once. Because each attack 

can have different scaling, it is important to make sure your 
stats are distributed equally.  
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SOURCE CODE 

The source code for the algorithm can be found in the 
following GitHub repository.  
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